High Performance Quantum Modular Multipliers
نویسندگان
چکیده
We present a novel set of reversible modular multipliers applicable to quantum computing, derived from three classical techniques: 1) traditional integer division, 2) Montgomery residue arithmetic [1], and 3) Barrett reduction [2]. Each multiplier computes an exact result for all binary input values, while maintaining the asymptotic resource complexity of a single (non-modular) integer multiplier. We additionally conduct an empirical resource analysis of our designs in order to determine the total gate count and circuit depth of each fully constructed circuit, with inputs as large as 2048 bits. Our comparative analysis considers both circuit implementations which allow for arbitrary (controlled) rotation gates, as well as those restricted to a typical fault-tolerant gate set.
منابع مشابه
A fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملReducing Hardware Complexity of Wallace Multiplier Using High Order Compressors Based on CNTFET
Multiplier is one of the important components in many systems such as digital filters, digital processors and data encryption. Improving the speed and area of multipliers have impact on the performance of larger arithmetic circuits that are part of them. Wallace algorithm is one of the most famous architectures that uses a tree of half adders and full adders to increase the speed and red...
متن کاملBit-Serial and Digit-Serial GF(2) Montgomery Multipliers using Linear Feedback Shift Registers
This work presents novel multipliers for Montgomery multiplication defined on binary fields GF(2). Different to state of the art Montgomery multipliers, this work uses a Linear Feedback Shift Register (LFSR) as the main building block. We studied different architectures for bit-serial and digit-serial Montgomery multipliers using the LFSR and the Montgomery factors x and xm−1. The proposed mult...
متن کاملBit-serial and digit-serial GF(2m)Montgomery multipliers using linear feedback shift registers
This work presents novel multipliers for Montgomery multiplication defined on binary fields GF(2). Different to state of the art Montgomery multipliers, this work uses a Linear Feedback Shift Register (LFSR) as the main building block. We studied different architectures for bit-serial and digit-serial Montgomery multipliers using the LFSR and the Montgomery factors x and x. The proposed multipl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.01081 شماره
صفحات -
تاریخ انتشار 2018